Monica's Blog

about me

Calciu Magneziu October 24, 2012

Filed under: Uncategorized — Monica @ 5:09 pm

White spots are due to deficiency of Zinc, not Calcium

Source: http://www.mybodylanguage.co.uk/white_spots.htm

——————–

 

Mai jos cateva din reactiile care au loc in organismele biologice.
In paranteza este numarul de ordine al elementului (nr. de protoni). Dupa cum se vede, la schimbarea
elementului participa doua sau mai multe elemente a caror numar de protoni in totalitate este egala
cu numarului de protoni al elementului nou creat.

Na(11)+ H(1) :=: Mg(12)
Na(11) + C(6) := Cl (17)
2 O [8]:= S (16)
Na (11) + O[8] :=: K (17)
Mg (12)+ O[8]:=: Ca (20)
Si(14) + C(6) :=: Ca (20)
Cl(17) :=: F(9) + O [8]
K(19) + H(1) :=: Ca(20)
Fe(25) :=: Mn(25)+ H(1)
C(6) + Li (3):= F (9)
K(19) := Li(3) + 2 O [8]
Mg(12) + Li(3) :=: P(15)
Na(11) := Li(3) + O[8]
P(15) + H(1) :=: S (16)
Si (14):= C(6) + O [8]
C(6) + F(9) :=: P (15)
2 N (7):= C(6) + O[8]
N2 (7)::= C(3) + O [8]
Si (14)+ Li(3): :=: Cl (17)
N2(7): + Li (3):=: Cl (17)
C (6)+ O [8]+ Li(3) :=: Cl (17)
Mg(12) + N (7):=: K (19)
Sr(38) + F(9) := Ag (47)

Calciul este produs in organism din siliciu, potasiu si magnesiu.
Si(14) + C(6) :=: Ca (20)
K(19) + H(1) :=: Ca(20)
Mg (12)+ O[8] :=: Ca (20)

Potasiu se gaseste in aproape orice aliment, in special in plante. Siliciu se afla aproape exclusiv in coaja de la cereale si in putine legume si fructe, iar magnesiul se gaseste in multe plante si carne. Insa in plantele la care s-au folosit ingrasaminte cantitatea de magnesiu este foarte mica.
Din cauza ca oamenii se hranesc numai cu paine alba, fara siliciu si ca multe plante nu mai contin magnesiu, apare des o lipsa de calciu sau o dereglare a calciului ionic la nivel de celula. In plus alimentatia cu alimente bogate in calciu (lactate) duce la disparitia magneziului din organism si deci la nevoia de magneziu din afara.

Desi lactatele contin deja mult calciu, acest calciu nu este asimilabil, mai ales daca exista deja o lipsa de siliciu si de magneziu.

Se pare ca pentru a produce calciul la organsim ii trebuie neaparat magneziu.
Mg (20)+ O[8] :=: Ca (20)

Din cartea lui Kervran:

“In 1856 Lawe si Gilbert au constata ca cenusa plantelor care la care s.-a folosit ca ingrasamant mangeziu, contineau mult mai putin magneziu decat plantele la care nu s-a folosit”
“In anul 1918 Osborne und Mendel au facut experimente foarte acurate pe sobolani. D. Bertrand: ‘Experimentul pe sobolani
arata ca magnesiul este mentinut constant in acestia ..si acesta nu este dependent de magnesiul continut in hrana, indiferent de varsta sobolanilor”.

D. Bertrand: “o hrana bogata in calciu duce la o eliminare marita de calciu si face de aceea necesar de magnesiul introdus din afara

Kervran a fost trimis in Sahara ca sa faca bilantul la magneziu in lucratorii de la sondele de titei. A fost facut timp de 6 luni bilantul la cantitatea de magneziu din alimente si eliminat de lucratori. Bilantul a iesit negativ, adica cantitatea de magneziu eliminata a fost mai mare decat cea consumata si acest lucru a fost dependenta de temperatura externa.
In luna aprilie bilantul a fost -2mg, in luna mai -107mg, in luna iulie -180mg, la inceputul lunii septembrie, cand a fost cel mai cald bilantul a fost -220mg. Dupa ce s-a racit vremea, in a doua jumtate a lui septembrie bilantul la mageneziu a scazut la -75mg.

Armata franceza a mai facut un experiment care a durat 8 luni si care a confirmat datele din primul experiment. In medie
s-a eliminat cu 80% mai mult magneziu decat a fost introdus prin alimentatie si apa. In acelasi timp cantitatea de sodiu eliminata a fost mult mai mica decat cea eliminata, ceea ce arata ca a avut loc reactia Na(11)+ H(1) :=: Mg(12) pentru a produce magneziul din sodiu.

Kervran : “Un crab care fara carapace din cauza ca tocmai si-o schimba carapacea mi-a fost adus de nepotii mei. L-am pus intr-o gaura in nisip care avea ceva apa de mare. Peste 30 de ore avea deja o carapace de 350 de grame. Continutul de calciu al apei de mare este insa foarte mic, 0,042%. Insa apa de mare contine 0,5% magneziu si 0,05% potasiu care pot fi transmutate in calciu. In laboratoriul din Roscoff s-a pus un crab fara carapace intr-un bazin care continea apa din care a fost eliminat tot calciul. Crabul si-a format totusi o carapace noua.”

“In laboratoriul national de cercetari (I.N.R.A) s-a facut un experiment pe vitei ca sa se arate ca viteii nu-si pot forma scheletul daca lipseste magnesiul din furaje. Cand lipseste magneziul din furaje, continutul de calciu din sange scade pana apare tetanie (spasmofilie). Acest lucru duce la crampe si la moarte in caz ca lipsa de magneziu este mentinuta. Daca se administreaza un supradozaj de magneziu atunci scheletul se formeaza mai repede si animalul creste mult mai repede.

Un studiu facut de D. Bernarnd a aratat ca lipsa de magneziu din hrana duce la scaderea calciului din sange pana se ajunge la spasmofilie. Administrarea de calciu nu duce la marirea calciului din sange in timp ce administrarea de magneziu duce la cresterea calciului din sange. In generel se adminstreaza clorid (clorura) de magneziu”.

Studii facute pe sobolani au aratat ca eliminarea magneziului din hrana sub 2,5 mg pe 100g de hrana duce la o blana proasta si la pierderea parului de pe coada. Oamenii au nevoie de mult mai mult magneziu atunci cand mananca carbohidrate (zahar, cereale).

Experimente pe soareci care au primit clorura de magneziu in hrana au arata ca in acestia creste atat nivelul de calciu cat si cel de fosfor, conform reactiei Mg(12) + Li(3) :=: P(15). Deci din magneziu corpul poate produce nu numai calciu ci si fosfor.
Fosforul este necesar la procesele legate de nervi si lipsa lui duce la dereglari nervoase.

Iata cu lipsa la un mineral esential din alimentatie sau excesele cu calciu care duc la pierderea magneziului din organism si care poate avea efecte foarte negative la un intreg sir de procese esentiale.

Ce consecinte putem trage din aceste lucruri:
1) la crampe si spasmofilie create de lipsa acuta sau cronica de calciu cel mai bun sumplement este clorura de magneziu dizolvata in apa (25 de grame la 1 litru de apa, o doza de 20-30 ml la mese sau in fazele acute) sau, pastile cu magneziu in caz ca nu se poate procura prima forma de magneziu.

Din punct de vedere energetic poate ajuta remediul homeopat Magnesium phosphoricum CH7 sau CH9, se suge cate o granula la un interval de 15 minute pana la ameliorare. Pastilele de calciu sunt de fapt foarte ineficiente in aceste cazuri si duc numai la o ameliorare scurta!

2) alimentatia cu lactate si produse care contin mult calciu duce la pierderea de magnesiu din organsim. Caci magneziul si calciu
fac parte dintr-o pereche si sunt antagonisti, cand unul este in surplus celelalt trebuie eliminat. Similar cu potasiu si sodiul.
Asta inseamna mai ales la gravide si la femeile care alapteaza ca daca se doreste ca copilul sa fie sanatos si sa aiba
destul calciu in oase si lapte, este nevoie sa se consume cat mai putine lactate si cat mai multe cereale integrale si fructe uscate bogate in magneziu. Si migdalele dulci contin mult magneziu. In special fructele uscate contin mult mai mult magneziul organic, de cate ori mai mult decat aceleasi fructe in stare naturala caci la uscare calciul este transfomrat in magneziu de catre bacterii si enzime.

3). Cine are putin calciu in sange sau probleme cu oasele (osteoporoza) trebuie sa reduca lactatele, trebuie sa evite dulciurile si trebuie sa evite suplimentele calciu si vitamina D (un hormon daunator de fapt) si trebuie sa ia ceva suplimente de magneziu (clorura de magneziu in apa) . In caz de pastile de magneziu – care nu sunt indicate – cel mai bine este ca pastila sa fie taiata in 4-6 bucati si luata des) . In plus este necesar de cateva doze de magneziu homeopat si calciu homeopat (Calcarea carbonica sau phoshorica , in functie de constitutie si Magnesium phosphorica in dilutia CH5 sau CH7) pentru reglarea asimilarii lui din alimente.

4. Consumul de dulciuri si excesul de carbohidrate (paine alba, faina alba) duce la pierderea de magneziu.

5. Consumul de pastile de calciu alopat duce la marirea deficientei de calciu. Tot ce face medicina este pe dos realitatii si naturii organismului. iar efectele tratamentelor alopate sunt aproape zero. Nu cunosc pe nimeni sa fi scapat de lipsa de calciu dupa ce a luat pastile cu calciu.

6. Folosirea de anticonceptionale si hormoni duce automat la scaderea nivelului de magneziu

7. La infectii, boli si stress corpul consuma mult magneziu. In aceste cazuri trebuie administrat mai mult magneziu.
Infectiile de orice fel, mai ales in stadiul incipeient pot fi comnatuite eficient cu doze de magneziu, caci el este folosit
de catre sistemul imunitar.

Cine are deci dereglari de calciu ionic, sau lipsa de calciu in sange, boli cronice, sistem imunitar slabit, oboseala cornica, cine este consumator de cafea si tigari ar trebui sa tina minte de aceste lucruri si sa actioneze corespunzator naturii si realitatii si nu corespunzator stiintei oarbe .

De ce exista lipsa de magneziu in plante si ce contine mult magneziu ?

Pe langa faptul ca exista sol sarac in magneziu si in agricultura se folosesc ingrasamimte cu potasiu, azot si fosfor
care fac planetele sa nu mai asimileze suficient magneziu din sol.
Magneziu este continut cel mai mult in coaja cerelelor si in nuci si alune si in cacao, in timp ce in legume este mult mai putin magneziu. Fructele uscate, in special curmalele cat si migdalele, contin mult magneziu. Nevoia de magneziu a unei unei gravide si a unei femei care alapteaza este mult mai mare si raportul zilnic de magneziu duce la eliminare aproblemelor cu alapatia si la lipsa de calciu in sugari.

Autor: Scarface

Biological Transmutations – C. L. Kervran

Despre transmutatii
http://merlib.org/blog/distance/5078

desre cura cu magneziu
http://www.newmediaexplorer.org/chris/2005/09/15/magnesium_chloride_in_acute_and_chronic_diseases.htm

Legatura dintre magneziu si insulina
http://diabetic.imva.info/index.php/causes-of-diabetes/the-insulin-magnesium-story/

SURSA: http://sanatate.findtalk.biz/t1287-lipsa-de-calciu-si-magneziul

————–

Nutrient-Nutrient Interactions

Sodium. Sodium and calcium excretion are linked in the proximal renal tubule. High sodium chloride intake results in increased absorbed sodium, increased urinary sodium, and an increased obligatory loss of urinary calcium (Kurtz et al., 1987). Quantitatively, 500 mg of sodium as sodium chloride has been shown to draw about 10 mg (0.25 mmol) of calcium into the urine in postmenopausal women (Nordin and Polley, 1987). This linkage holds at moderate and high calcium intakes, but some dissociation occurs at low calcium intakes (Dawson-Hughes et al., 1996), probably because low calcium intakes induce higher PTH levels, and PTH promotes the reabsorption of filtered calcium in the distal renal tubule. In children and adolescents, urinary sodium is an important determinant of urinary calcium excretion (Matkovic et al., 1995; O’Brien et al., 1996). An association between salt intake (or sodium excretion) and skeletal development has not been demonstrated in children or adolescents, but one longitudinal study in postmenopausal women identified a correlation between high urinary sodium excretion and increased bone loss from the hip (Devine et al., 1995). Thus, although indirect evidence indicates that dietary sodium chloride has a negative effect on the skeleton, the effect of a change in sodium intake on bone loss and fracture rates has not been reported. Although there is some concern related to the effects of the high salt content of American diets (from processed foods, etc.), available evidence does not warrant different calcium intake requirements for individuals according to their salt consumption.

Protein.Protein increases urinary calcium excretion, but its effect on calcium retention is controversial. In balance studies involving use of formula diets in which the phosphorus content was stable, 1 g of dietary protein from both animal and vegetable sources increased urinary calcium excretion by about 1 to 1.5 mg (Linkswiler et al., 1981; Margen et al., 1974). Walker and Linkswiler (1972) found that urinary calcium increased by about 0.5 mg for each gram of dietary protein, as protein intake increased above 47 g/day. In a recent study, a high protein intake (2.71 ± 0.75 g/kg/day) had no measurable effect on urinary pyridinium cross-links of collagen, an index of bone resorption (Delmas, 1992), in young adults consuming 1,600 mg (40 mmol)/day of calcium, possibly because of the variability in this measure (Shapses et al., 1995). While dietary protein intake increases urinary calcium excretion, it should be recognized that inadequate protein intakes (34 g/day) have been associated with poor general health and poor recovery from osteoporotic hip fractures (Delmi et al., 1990). Similarly, serum albumin values have been shown to be inversely related to hip fracture risk (Huang et al., 1996). Available evidence does not warrant adjusting calcium intake recommendations based on dietary protein intake.

Other Food Components

Caffeine.Caffeine has a modest negative impact on calcium retention (Barger-Lux et al., 1990) and has been associated with increased hip fracture risk in women (Kiel et al., 1990). The association of caffeine consumption with accelerated bone loss has been limited to postmenopausal women with low calcium intakes (Harris and Dawson-Hughes, 1994). Specifically, associations with bone loss from the spine and total body were identified in women who consumed less than about 800 mg (20 mmol)/day of calcium and the amount of caffeine present in two or more cups of brewed coffee. Consistent with this is the observation that the negative effect of caffeine on BMD can be offset by the addition of dietary calcium (Barrett-Connor et al., 1994). Caffeine induces a short-term increase in renal calcium excretion (Massey and Wise, 1984) and may modestly decrease calcium absorption (Barger-Lux and Heaney, 1995); its effect on dermal calcium loss has not been evaluated. In summary, the skeletal effects of caffeine are modest at calcium intakes of 800 mg (20 mmol)/day and above. Available evidence does not warrant different calcium intake recommendations for people with different caffeine intakes.

Special Populations

Amenorrheic Women.Conditions that produce lower levels of circulating estrogen alter calcium homeostasis. Young women with amenorrhea resulting from anorexia nervosa have reduced net calcium absorption, higher urinary calcium excretion, and a lower rate of bone formation when compared with healthy eumenorrheic women (Abrams et al., 1993). Exercise-induced amenorrhea also results in reduced calcium retention and lower bone mass (Drinkwater et al., 1990; Marcus et al., 1985).

Menopausal Women. Decreased estrogen production at menopause is associated with accelerated bone loss, particularly from the lumbar spine, for about 5 years (Gallagher et al., 1987). During this period, women lose an average of about 3 percent of their skeletal mass per year. Lower levels of estrogen are accompanied by decreased calcium absorption efficiency (Gallagher et al., 1980; Heaney et al., 1989) and increased rates of bone turnover. These observations may be interpreted several ways. First, lowered estrogen levels primarily affect the skeleton, leading to increased bone resorption, an increase in circulating ionized calcium, a decrease in 1,25 (OH)2D, and reduced stimulus for active intestinal transport of calcium (Gallagher et al., 1980). A second interpretation is that estrogen deficiency primarily reduces the efficiency of dietary calcium utilization and that this reduced efficiency produces a bone loss related to calcium substrate deficiency (Gallagher et al., 1980). A third interpretation is that estrogen has primary effects on both bone and the intestine. The impact on what the dietary calcium intake should be to meet requirements in the above scenarios differs. Increasing calcium intake would provide little skeletal benefit if the primary effect of estrogen withdrawal is at the skeleton. That is, increasing calcium intake would increase absorbed calcium but not the deposition of calcium in bone. The excess absorbed calcium would be excreted in the urine. In contrast, increasing calcium intake should correct the problem (for example, prevent bone loss) if estrogen deficiency primarily reduces calcium absorption efficiency.

Examination of the skeletal response to calcium supplementation in premenopausal and early postmenopausal women provides some insight. In a longitudinal calcium supplement trial in women aged 46 to 55 years, Elders et al. (1994) found that 2,000 mg (50 mmol)/day of supplemental calcium significantly reduced bone loss from the lumbar spine in premenopausal women but not in the early postmenopausal women. The effect of calcium supplementation on metacarpal cortical thickness was not significantly related to the menopausal status of the women in this study. In a different study of women with low usual calcium intakes, supplementation with 500 mg (12.5 mmol)/day of calcium had no significant impact on bone loss from the spine or other sites in early postmenopausal women, but it significantly reduced bone loss in women more than 5 years beyond menopause (Dawson-Hughes et al., 1990). From these and other studies (Aloia et al., 1994; Prince et al., 1991; Riis et al., 1987) (see Table 4-1), it is apparent that increasing calcium intake will not prevent the rapid trabecular bone loss that occurs in the first 5 years after menopause. Calcium responsiveness of cortical bone appears to be less dependent on menopausal status. In summary, from available evidence, the calcium intake requirement for women does not appear to change acutely with menopause. appears to be less dependent on menopausal status. In summary, from available evidence, the calcium intake requirement for women does not appear to change acutely with menopause.

Lactose Intolerance. About 25 percent of adults in the United States have lactose intolerance and develop symptoms of diarrhea and bloating after ingestion of a large dose of lactose, such as the amount present in a quart of milk (about 46 g) (Coffin et al., 1994). Primary lactase deficiency begins in childhood and may become clinically apparent in adolescence. In adults, the prevalence of lactose intolerance, as estimated by a positive breath-hydrogen test, is highest in Asians (about 85 percent), intermediate in African Americans (about 50 percent), and lowest in Caucasians (about 10 percent) (Johnson et al., 1993a; Nose et al., 1979; Rao et al., 1994). Lactose-intolerant individuals often avoid milk products entirely although avoidance may not be necessary. Studies have revealed that many lactose-intolerant people can tolerate smaller doses of lactose, for example, the amount present in an 8 oz glass of milk (about 11 g) (Johnson et al., 1993b; Suarez et al., 1995). In addition, lactose-free dairy products are available. Although lactose-intolerant individuals absorb calcium normally from milk (Horowitz et al., 1987; Tremaine et al., 1986), they are at risk for calcium deficiency because of avoidance of milk and other calcium-rich milk products. Although lactose intolerance may influence intake, there is no evidence to suggest that it influences the calcium requirement.

Vegetarian Diets. Consumption of vegetarian diets may influence the calcium requirement because of their relatively high contents of oxalate and phytate, compounds that reduce calcium bioavailablity. In contrast to diets containing animal protein, however, vegetarian diets produce metabolizable anions (for example, acetate, bicarbonate) that lower urinary calcium excretion (Berkelhammer et al., 1988; Sebastian et al., 1994). On balance, lacto-ovovegetarians and omnivores appear to have fairly similar dietary calcium intakes (Marsh et al., 1980; Pedersen et al., 1991; Reed et al., 1994) and, on the same intakes, to have similar amounts of urinary calcium excretion (Lloyd et al., 1991; Tesar et al., 1992). BMD has been examined and compared in several cross-sectional studies of lactoovovegetarians and omnivores. Among premenopausal women, spinal BMD did not differ significantly in the two groups (Lloyd et al., 1991). Postmenopausal lacto-ovovegetarians are reported to have higher cortical bone mass than omnivores, as indicated by higher midradius density (Marsh et al., 1980; Tylavsky and Anderson, 1988). However, in a 5-year study, postmenopausal lacto-ovovegetarians and omnivores with similar calcium intakes lost radius BMD at similar rates (Reed et al., 1994). Bone data on strict vegetarians (vegans) are not available, but there is evidence in this group to indicate lower intakes of calcium (among other nutrients) in premenopausal women (Janelle and Barr, 1995), and lower body weight in children (Sanders and Purves, 1981). In conclusion, available data do not support the need for a different calcium intake recommendation for vegetarians.

 

Leave a comment